Low Power Heterogeneous Adder
ثبت نشده
چکیده
Flexibility and Portability has increased the requirement of Low Power components in fields like multimedia, signal processing and other computing applications. Adders are the essential computing elements in such applications. However the present adder architectures with hybrid/heterogeneous features provide performance variations but limits to consume less power. In this paper, low power heterogeneous adder architecture is proposed to enable flexibility to the computing applications and consume less power. 128 bit heterogeneous adder architecture is built using three low power sub-adders (ripple carry, carry look ahead and carry bypass adders). Adder variants in sub-adders block of heterogeneous adder architecture enables to select required quality metrics viz., area, timing and power, for the design. Application requirements like low power – same performance, low power – low area, variable performance can be selected. Designs are demonstrated using Verilog HDL by synthesizing with Cadence’s RTL Compiler and mapped to TSMC 65nm technological library node. Key-Words: Heterogeneous adder, Power delay trade-off, Low Power VLSI, Digital Filter, Verilog
منابع مشابه
Low-Power Adder Design for Nano-Scale CMOS
A fast low-power 1-bit full adder circuit suitable for nano-scale CMOS implementation is presented. Out of the three modules in a common full-adder circuit, we have replaced one with a new design, and optimized another one, all with the goal to reduce the static power consumption. The design has been simulated and evaluated using the 65 nm PTM models.
متن کاملA Low Power Full Adder Cell based on Carbon Nanotube FET for Arithmetic Units
In this paper, a full adder cell based on majority function using Carbon-Nanotube Field-Effect Transistor (CNFET) technology is presented. CNFETs possess considerable features that lead to their wide usage in digital circuits design. For the design of the cell input capacitors and inverters are used. These kinds of design method cause a high degree of regularity and simplicity. The proposed des...
متن کاملFast Mux-based Adder with Low Delay and Low PDP
Adders, as one of the major components of digital computing systems, have a strong influence on their performance. There are various types of adders, each of which uses a different algorithm to do addition with a certain delay. In addition to low computational delay, minimizing power consumption is also a main priority in adder circuit design. In this paper, the proposed adder is divided into s...
متن کاملSymmetrical, Low-Power, and High-Speed 1-Bit Full Adder Cells Using 32nm Carbon Nanotube Field-effect Transistors Technology (TECHNICAL NOTE)
Carbon nanotube field-effect transistors (CNFETs) are a promising candidate to replace conventional metal oxide field-effect transistors (MOSFETs) in the time to come. They have considerable characteristics such as low power consumption and high switching speed. Full adder cell is the main part of the most digital systems as it is building block of subtracter, multiplier, compressor, and other ...
متن کاملVLSI Implementation of Heterogeneous Adder for Performance Optimization
An Adder is one of the significant hardware blocks in most digital systems such as digital signal processors and microprocessors etc. Over the last few decades lot of research have been carried out in order to design an efficient adder circuits in terms of compactness, high speed and low power consumption. However, area and speed are two conflict parameters. So, improving speed results always i...
متن کامل